PHOTOCYCLIZATION OF 5-(1-ALKENYL)-1-PHENYLPYRAZOLES:

A CONVENIENT SYNTHESIS OF 4.5-DIHYDROPYRAZOLO[1.5-a]OUINOLINES

Christian Deshaves and Suzanne Gelin *

Laboratoire de Chimie Organique, Institut National des Sciences Appliquées
F-69621 Villeurbanne Cedex, France.

Summary: The photocyclization of some 5-(1-alkenyl)-4-ethoxycarbonyl-1-phenylpyrazoles affords 3-ethoxycarbonyl-4,5-dihydropyrazolo[1,5-a]quinolines which are decarboxylated to the 3-unsubstituted analogs.

There are few synthetic routes to 4,5-dihydropyrazolo[1,5-a]quinolines 1-6. Only one report in the literature describes the use of photocyclization in the synthesis of 3,4-dimethyl-2-phenyl-4,5-dihydropyrazolo[1,5-a]quinoline from 5-isopropenyl-4-methyl-1,3-diphenylpyrazole⁴. The potential usefulness of 5-(1-alkenyl)-1-phenylpyrazoles was hitherto limited since their synthesis were rather difficult 4,7,8. Recent work from our laboratory has centered on the preparation of this class of pyrazoles^{5,6}. Electrophilic ring closure to afford the pyrazoloquinolines was only successful in the case of 1-phenylpyrazoles bearing a styryl or 2-methyl-1-propenyl group at the C-5 position^{5,6}. Consequently, we have explored the photoreactivity of a series of various 5-alkenyl or dialkenyl-1-phenyl-pyrazoles (1), to allow a general entry to 4,5-dihydropyrazolo[1,5-a]quinolines.

Irradiation of compounds (<u>la-e</u>) under nitrogen, in benzene as solvent, for one hour, gives rise, in all cases, to complete conversion to 3-ethoxycarbonyl-4,5-dihydro[1,5- α]quinolines (2a-e)⁹.

Table.	Physical	constants	and	spectral	data	of	compounds	(3)	and	(4)	
--------	----------	-----------	-----	----------	------	----	-----------	-----	-----	-----	--

Compd	Yield	Mp	UV (С ₂ н ₅ он)	1 _{H NMR}	, δ ppm (DMSO-d ₆ for <u>3</u> , CDC1	for 4).	
	7.	°C	λ _{max} nm (ε)	H-2	н-3		H-5 (m)	H-9 (m)
3a6	69 ^b	149	268 (14400)	8.08 ^d		3.5-4.0 (1H) 2.8	8-3.5 (1н)	7.8-8.0
<u>3b</u>	65 ^b	177	267 (15900)	8.14 ^d		3.7-4.2 (1H) 2.7	7-3.5 (2H)	7.8-8.1
<u>3c</u>	68 ^b	190	268 (16100)	8.08^d		3.23 ^d (2H)		7.8-8.0
<u>3d</u>	65 ⁶	183	268 (15000)	8.14 ^d		2.9-3.7 (3	3H)	7.8-8.1
$3e^g$	62 ^b	168	267 (14800)	8.05 ^d		2.8-4.4 (3	3н)	7.7-8.0
<u>4a</u> 6	75 ^C	oil	263 (13500)	7.65 ^e	6.20 ^e	2.5-3.5 (2	2H)	7.8-8.1
<u>4b</u>	70 ^C	oil	261 (13100)	7.65 ^e	6.20 ^e	2.4-3.4 (3	3H)	7.8-8.1
<u>4c</u>	77 ^C	oil	263 (14700)	7.68 ^e	6.20 ^e	2.86 ^d (2H)		7.9-8.1
<u>4d</u>	79 ^C	oil	262 (15400)	7.65 ^e	6.20 ^e	2.5-3.3 (3	3H)	7.9-8.1

a All products give satisfactory elemental analyses. b Irradiation of a solution of (1) (5 mmol), in benzene (500 ml) for 1 h through a quartz tube with a 400 W high pressure mercury lamp, as nitrogen is bubbled through it, yields the dihydropyrazoloquinolines (2). The esters (2) are converted to the acids (3) by refluxing with 10% KOH for 4 h and acidifying. Analytical samples are obtained by recrystallization from methanol (3b), acetonitrile (3c-e) or by column chromatography on silica gel using ethyl acetate as eluent (3a). C Decarboxylation of (2) obtained as described above, by heating for 15 min at 190°C in 85% phosphoric acid (5g) and concentrated sulfuric acid (0.75 g), followed by extractive work up with chloroform and column chromatography on silica gel using hexane/ethyl acetate 4:1 as eluent affords (4). d (s). e (d, J = 1.5 Hz). Mixture of cis/trans isomers in a ratio respectively of 2:1. g Mixture of E/Z isomers in a ratio of 1:1.

COOC₂H₅

R²

R³

$$R^{1}$$
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 $R^{$

When the reaction is stopped after ten minutes, analysis of the reaction mixture shows that the ratio (2):(1) is slighty substituent dependent: a methyl substituent on the α position of the alkenyl chain decreases the reactivity.

Product ratio (2):(1) after ten min.

The formation of the new bond closing the ring of pyrazole between an aromatic ring and an alkenyl group appears to derive of a conrotatory process 10 , involving a zwitterionic intermediate. Subsequent thermal suprafacial [1,5] (or [1,9]) sigmatropic shift of a hydrogen atom gives rise to the dihydropyrazoloquinoline. Following this mechanism, trans 3-ethoxycarbonyl-4,5-dimethyl-4,5-dihydropyrazolo[1,5-a]quinoline should be obtained

starting from (E) 5-(1-methyl-1-propenyl)-1-phenylpyrazole (1a). Surprisingly, a mixture of inseparable cis/thans isomers (2a) in a ratio respectively 2:1 is obtained 11. It is not clear how the cis product is formed. A possible explanation for this stereochemical feature could be due to a partial E/Z isomerisation of the side chain prior to ring closure. However, no evidence of the presence of the Z isomer can be obtained from analysis of the partially photocyclized mixture. It is possible that the Z isomer is more reactive than its precursor E isomer. The isomeric composition of the products of irradiation of (1a), analyzed at various intervals of time (10 min, 30 min, 1 h, 5 h) remains the same. Trans/cis isomerization post to the cyclization seems unlikely in anaerobic conditions and aprotic solvent.

Decarboxylation of the dihydropyrazoloquinolines (2a-d), by heating, in acidic medium affords easily the corresponding 3-unsubtituted derivatives (4). Compound (3e) polymerizes.

Additionnal studies concerning substituent effects and mechanistic details of this reaction are in progress.

REFERENCES AND NOTES

- J. Elguero, R. Jacquier and G. Tarrago, Bull. Soc. Chim. Fr., 2876 (1969).
- J. Elguero, R. Jacquier, A. Haq and G. Tarrago, Bull. Soc. Chim. Fr., 3136 (1970).
- G. Winters, G. Odasso, G. Galliani and L. J. Lerner, Germ. Pat. 2,551,879 (1976).
 (Gruppo Lepetit S.p.A.); Chem. Abstr., 85, 94369g (1976).
- H. Gotthardt and F. Reiter, Chem. Ber., 112, 1206 (1979).
- C. Deshayes , M. Chabannet and S. Gelin, Synthesis, 1088 (1982).
- S. Gelin and C. Deshayes, Synthesis, in press.
- C. Deshayes and S. Gelin, J. Heterocyclic Chem., 16, 657 (1979).
- ° J. Elguero, R. Gelin, S. Gelin and G. Tarrago, Bull. Soc. Chim. Fr., 231 (1970).
- The oily esters (2) are converted to the cristalline acids (3) for purification.
- R. B. Woodward and R. Hoffman, Angew. Chem., 81, 797 (1969).
- Based on the coupling constants H_L-H₅ observed in the 350 MHz ¹H-NMR spectrum of the isomeric mixture (3a): J_{cis}= 1.3 Hz; J_{trans}= 5.6 Hz. This is in accordance with the general principle of stereochemical assignment by examination of molecular models (M. J. Karplus, J. Am. Chem. Soc., 85, 2870 (1963); L. M. Jackman and S. Sternhell, "Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", 2nd ed.; Pergamon Press: New York, 1969).